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INTRODUCTION

As part of an effort to develop high performance structural resins with
an attractive combination of properties, block copolymers containing an
arylene ether and an imide segment were synthesized. Requirements for
successful high performance composite matrix resins include stability in a
hostile environment (aggressive solvents and high temperature), damage
tolerance, good mechanical properties and low cost manufacturing.

Linear polyimides have excellent thermal stability, generally good
environmental stability and high mechanical properties, but are often
difficult to fabricate as structural adhesives or composite matrices.

However, poly(arylene ethers) (PAE) have good thermal stability and
mechanical properties and are easier to compression mold. The copolymers
reported herein represent our initial work on imide/arylene ether
copolymers which were synthesized in an attempt to take advantage of the
attractive features of each system. A polymer previously reported! to have
high toughness and low melt viscosity was selected as the arylene ether
segment for use in this study. Two imide segments were studied, the first a

well known amorphous polyimide with good physical and mechanical
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properties and the second, a semi-crystalline polyimide? with excellent
properties that contains an arylene ether ketone segment similiar in
structure to that of the arylene ether block. Some preliminary information
on these block copolymers has been reported3.4 previously.

Many copolymers containing an imide block and some other block
have been repdrted. Most notable, the copolymers containing imide and
siloxane blocks have received considerable attention.-8 Other block -
copolyimides including poly(arylsulfone-imides),® poly(imide-elastomers),10
poly(imide-urethanes),!! poly(amide-imides),12 poly(ester-imides),13
poly(imidine-imides)!4 and copolymers of imide-aryl ether benzoxazoles15.16

have been reported.

EXPERIMENTAL
Monomers

2,2-Bis(4-hydroxyphenyl)propane (BPA) was obtained commercially
and recrystallized from toluene to yield a white crystalline solid (mp 156~
157°C). 1,3-Bis(4-fluorobenzoyl)-benzene (FFB) was synthesized as
previously reported! and recrystallized from touene to yield a white
crystalline solid (mp 178-179°C). 4-Aminophenol was obtained
commercially and vacuum sublimed to yield an off-white solid (mp 188-
190°C). 4,4'-Oxydianiline (ODA) was obtained commercially and vacuum
sublimed to yield an off-white solid (mp 190-192°C). Bis(4-aminophenoxy-
4'benzoyl)benzene (BABB) (mp 161.5-164°C) was obtained from Air Products
and Chemicals, Inc. 3,3'.4,4'-Benzophenonetetracarboxylic dianhydride
(BTDA) was obtained commercially and vacuum sublimed to yield a white

crystalline solid (mp 224-226°C).



Oligomers
The amine-terminated poly(arylene ethers) (ATPAE) were synthesized

as shown in Eq. 1, by aromatic nucleophilic substitution of FFB with BPA and
4-aminophenol in N,N-dimethylacetamide (DMAc) using potassium
carbonate. The oligomers were prepared at two different calculated
molecular weights (Mp) by adjusting the monomer ratio (BPA/FBB) to 0.85
and 0.925 to provide Mps of 3110 and 6545 g/mole, respectively.

The following procedure is representative of ATPAE synthesis. FBB
(22.562 g, 70.0 mmol), BPA (13.583 g, 59.5 mmol), 4-aminophenol
(2.292 g, 21.0 mmol) and potassium carbonate (21.28 g, 154 mmol) in
DMACc (115 ml) and toluene (40 ml) were stirred under a nitrogen
atmosphere. The toluene/water azeotropic mixture was removed using a
Dean-Stark trap as the reaction was heated to and held at 155°C for 16h.
After filtering through sintered glass and neutralizing with acetic acid, the
polymer was precipitated in water and subsequently washed with boiling
water to provide ATPAE 3110 as an off-white solid in >95% yield.

The anhydride-terminated poly(amic acids) based on ODA and BTDA
were prepared at two different M;s by adjusting the monomer ratio
(ODA/BTDA) to 0.845 and 0.923 to provide My, of 3110 g/mole and
6545 g/mole, respectively as shown in Eq. 2. The synthesis for ODA/BTDA
3110 is given as an example. ODA (1.1844 g, 5.915 mmol) was dissolved in
DMAc (17 ml) followed by addition of BTDA (2.2556 g, 7.0 mmol) with
stirring for 3h at ambient temperature in a nitrogen atmosphere to form a
clear yellow solution. The polyamic acid was then immediately polymerized
with ATPAE. The anhydride-terminated poly(amic acids) based on BABB and
BTDA were prepared at two different Mgs in either DMAc or N-methyl-2-
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pyrrolidinone (NMP) by adjusting the monomer ratio (BABB/BTDA) to 0.766
and 0.882 to provide My, of 3110 g/mole and 6545 g/mole, respectively as

shown in Eq. 3.

Copolymers
The copolymers were prepared by adding a DMAc or NMP solution of

ATPAE to the anhydride terminated poly(amic acid) reaction mixture. For
example, to prepare ATPAE 3110//BABB/BTDA 3110, BTDA (1.1278 g,
3.5000 mmol) was added to a solution of BABB (1.3315 g, 2.6600 mmol) and
DMAc (13.9 g) in nitrogen. The mixture was stirred 3h to form a clear
solution. A solution of ATPAE 3110 (2.4593 g, 0.7908 mmol) in DMAc (13.9
g) was added to the poly(amic acid) solution to form a clear, viscous solution.
Some reactions became very viscous and gelled within 15 min, but stirring
overnight provided a clear viscous solution. These solutions were used to
cast films which were thermally imidized. No gelation of the poly(amic
acids) occurred using NMP or when the imide block was ODA/BTDA.

An alternate imidization procedure involved stirring the poly(amic
acids) for 2h followed by the addition of toluene and heating to 155°C for
18h under a Dean-Stark trap. The yellow slurry was poured into water, the
solid collected and subsequently washed in water. Drying in air at 100°C

provided yellow powders that were used to prepare moldings.

Characterization

Inherent viscosities (ninn) were obtained on 0.5% solutions in CHCl3 at

25°C for the ATPAE oligomers and poly(arylene ether) (FBB + BPA) and in
DMAc or NMP at 25°C for the other polymers and copolymers. Differential
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scanning calorimetry (DSC) was performed at a heating rate of 20°C/min
with the apparent Tg taken at the inflection point of the AT versus

temperature curve. Torsional braid analysis (TBA) was performed at a
heating rate of 3°C/min with the Tg taken at the peak of the damping curve.
The number average molecular weight was determined for the amine-
terminated poly(arylene ethers) (ATPAE) by amine group titration using a
MCI Model GT-05 Autotitrator with 0.02 M HBr in glacial acetic acid as the
titrant. The ATPAEs were dissolved in a 2:1 mixture of chlorobenzene and

acetic acid.

Films

DMAc or NMP solutions (15% solids) of the polymers were
centrifuged, the decantate doctored onto plate glass and dried at room
temperature to a tack-free form in a dry air chamber. The films on glass
were dried 1 h each at 100, 200 and 300°C. Mechanical tests were
perfomed according to ASTM D882 on four specimens per test condition.
Wide-angle X-ray scattering (WAXS) data was obtained on thin film

specimens of the copolymers.

Moldings
The polymers were compression molded in a 1.25 in. square stainless
steel mold using a hydraulic press equipped with electrically heated platens.
Polymer filled molds were heated to 380°C, a pressure of 300 psi was
applied and maintained fo 0.5h, followed by cooling under pressure. Four
compact tension specimens ~0.62 x 0.62 x 0.30 in. thick were machined

from the 1.25 in. square molding and tested according to a known

procedure.17
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RESULTS AND DISCUSSION

ATPAEs with calculated Mys of 3110 and 6545 g/mole were prepared
by offsetting monomer stoichiometry. These oligomers had nj,n of 0.16 and
0.29 dL/g and Tg of 133 and 146°C, respectively, as shown in Table I. When
the oligomers were reacted with a stoichiometric amount of BTDA, the ninh
and the Ty increased as expected. The high ninn obtained indicated that the
calculated Mps were essentially correct. Subsequent end group analysis gave
experimental Mys of 3600 g/mole and 7300 g/mole for the calculated Mps
of 3110 g/mole and 6545 g/mole, respectively.

Table I also shows data for the homopolymers and 1:1 physical blends
of the PAE with each polyimide prepared by mixing DMAc solutions of each.
Both blend solutions phase-separated with the PAE migrating to the bottom
phase and the poly(amic acid) migrating to the top phase. Small films cast
from thoroughly mixed, cloudy solutions and cured to 300°C for 1h appeared
to be completely phase separated. All polymers shown in the table are
amorphous except the BABB/BTDA which has a Ty, of 350°C.

Eight different block copolymers were prepared from reaction of the
ATPAEs and the imide oligomers shown in Table II. The first four
copolymers, that were prepared in PMAc only, contained imide blocks of
ODA/BTDA while the last four contained BABB/BTDA imide blocks and were
prepared in both DMAc and NMP. The ATPAE 6545//0ODA/BTDA 6545
copolymer with nynn = 1.37 dL/g was prepared using a stoichiometric ratio
of oligomers. This polymer had a molecular weight too high to be easily
compression molded (e. g. high melt viscosity), so the remaining
copolymers utilizing the ODA/BTDA block were prepared at a 1.5% offset in
stoichiometry favoring the ODA/BTDA oligomer. The resulting decrease in
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molecular weight as evidenced by ninn was larger than expected but tough,
creasible films were formed. The ATPAE//BABB/BTDA copolymers shown in
Table II were prepared using a stoichiometric ratio of oligomers to produce
poly(amic acids) with njnhs ranging from 0.63 to 0.89 dL/g in DMAc and
from 0.90 to 1.73 dL/g in NMP.

The cured copolymers were characterized by DSC and these results

are also shown in Table II. The ODA/BTDA containing copolymers with
longer imide blocks show two Tgs, at temperatures slightly higher than the

PAE and lower than the imide homopolymer Tgs. This indicates only a
partial compatibility of the different blocks in the copolymer. The
copolymers with the shorter ODA/BTDA block displayed only the lower Tg.
The BABB/BTDA imide was chosen for further work because of its
exceptional mechanical properties and since it contains an arylene ether
ketone segment similar to the PAE, which was expected to improve the
block compatibility of the copolymers. These copolymers had Tgs ranging
from 165-175°C except for the ATPAE 6545//BABB/BTDA 6545 prepared in
NMP which had Tgs at 164 and 220°C. The copolymers were semi-
crystalline with T, shown in parenthesis.

The last column in Table II shows transitions as measured by TBA,
which measures a thermomechanical softening of the polymer compared to
a purely thermal measurement of differential scanning calorimetry. In
essentially every case this transition is different from the DSC Tg. For the
first four copolymers which contain only amorphous blocks, the major TBA
transitions appears either near the Ty of the major component (267°C when
the major component is imide and 176°C when the major component is

arylene ether) or as an average of the two homopolymer Tgs (216°C and



214°C) when each component is present in equal amounts. However, the
TBA peaks were broader than for typical homopolymers and had a shoulder
present near the Tg of the minor component. The last four copolymers in
the table, which have a semi-crystalline imide block, display a wide range of
TBA transitions (168 to 249°C). The ATPAE 3110//BABB/BTDA 3110 gives
one peak in the damping curve indicating a transition at 193°C which was
approximately the average transition for the homopolymers. The ATPAE
3110//BABB/BTDA 6545 displayed a transition at 249°C, higher than either
homopolymer Tg. This transition must be influenced by the rigidity in the
crystalline regions of the PI, since the imide segment is present in twice
the amount as the PAE. The ATPAE 6545//BABB/BTDA 3110 had a
transition at 185°C, slightly higher than the calculated Tg from the rule of
mixtures (177.4°C). The ATPAE 6545//BABB/BTDA 6545 displayed two
peaks in the damping curve at 168 and 205°C. These transitions are
approximately 15°C above and below the Tgs of the PAE and PI, respectively
indicating some incompatibility between the blocks at this molecular weight
level.

The copolymers containing the BABB/BTDA blocks displayed melting
points in DSC so they were further analyzed by wide angle X-ray scattering.
This data indicated that block copolymer films cured 1h at 300°C were
semi-crystalline. Furthermore, copolymers with longer imide blocks or
higher imide content had more intense and sharper peaks indicating more
crystallinity than the others. Figure 1 shows the X-ray diffraction pattern for
ATPAE 3110//BABB/BTDA 3110 and is representative of the diffraction
pattern for the other copolymers containing BABB/BTDA. The peak
positions are essentially indentical to those of the BABB/BTDA homopolymer

with minor differences in sharpness and intensity.



Thin films of the homopolymers and copolymers were tested for
mechanical properties and results are shown in Table Ill. Tensile strength,
tensile modulus and film elongation were measured at room temperature
(RT), 93°C and 177°C. In general, unoriented films of the imide
homopolymers have high tensile strength and modulus and low elongation
while the PAE has lower strength and modulus and very high elongation.
Except for the films with the textured surface, presumably due to
incompatability of the blocks, the block copolymer films seem to follow a
rule of mixtures weighted average for tensile strength and modulus when
tested at RT and 93°C. That is, copolymers with longer imide blocks
produced higher strength and modulus than those with longer arylene ether
blocks. When testing at 177°C, the copolymers gave very poor properties
due undoubtably to the low Tg (~155°C) arylene ether block.

The block copolymers with imide blocks of BABB/BTDA were
prepared as a fine, yellow powder by solution imidization, molded into
compact tension specimen and tested for fracture toughness and energy.
Data for these tests are shown in Table IV. Critical stress intensity factor
(Kic) ranges from 3370 to 5070 psi ¢ inl/2 while critical strain energy
release rate (Gjc) ranges from 22 to 67 in-lbs/in2. The failed specimens
exhibited a fracture surface that was highly crazed with evidence of
pronounced polymer yielding. The FBB/BPA has the highest values. Since
Gic equals Kjc divided by the square of the film modulus, there is not a direct
relation of Kjc to Gjc but the same general trend is present in both
measurements. Results for each measurement fall below a rule of mixtures
weighted average but the copolymers are still extremely tough materials,
with the higher values corresponding to copolymers with higher molecular

weight blocks. ,
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Conclusions

Two series of block copolymers were prepared using an arylene ether
block and either an amorphous or crystalline imide block. Copolymers with
shorter blocks were more compatible than copolymers with longer blocks.
Homopblymer blends were completely incompatible and phase separated
upon mixing solutions and casting films. Copolymers containing a crystalline
imide block were crystalline as-prepared but the crystallinity was
unrecoverable by annealing after heating above the T,. Film properties
appear to follow a rule of mixtures weighted average while polymer

toughness was below this average but still extremely high.
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